
X: A Comprehensive Analytic Model for Parallel Machines

Ang Li*, Shuaiwen Leon Song†, Eric Brugel‡, Daniel Chavarrı́a-Miranda†, Akash Kumar§, and Henk Corporaal*

* Eindhoven University of Technology, The Netherlands
† Pacific Northwest National Laboratory, USA
‡ The State University of New Jersey, USA
§ Technische Universität Dresden, Germany

ang.li@tue.nl, shuaiwen.song@pnnl.gov, akash.kumar@tu-dresden.de,
brugel18@gmail.com,daniel.chavarria@pnnl.gov, h.corporaal@tue.nl

Abstract—To continuously comply with Moore’s Law, mod-
ern parallel machines become increasingly complex. Effectively
tuning application performance for these machines therefore
becomes a daunting task. Moreover, identifying performance
bottlenecks at application and architecture level, as well as
evaluating various optimization strategies, are becoming ex-
tremely difficult when the entanglement of numerous correlated
factors is being presented. To tackle these challenges, we
present a visual analytical model named “X”. It is intuitive
and sufficiently flexible to track all the typical features of
a parallel machine. Different from the conventional analytic
models that focus on the temporal state of a representative core
or thread, our proposed X-model concentrates on the spatial
state of parallel machines – the distribution of concurrent
threads among different subsystems of these machines, while
predicting the overall throughput based on such state. One
major highlight of our model is its tractability as it only
requires a small number of essential parameters from the
application and architecture. Meanwhile, it is able to effectively
help users investigate the combined-effects of different types of
parallelism: the instruction-level-parallelism (ILP), the thread-
level-parallelism (TLP), the memory-level-parallelism (MLP)
and the data-level-parallelism (DLP). Through our X-model,
developers and architects can quickly draw an intuitive figure
called X-graph to identify performance bottlenecks, as well
as play “what-if ” scenarios to evaluate the effectiveness of
the proposed optimization techniques by investigating their
individual and combined effects.

I. INTRODUCTION

Despite the fact that Moore’s Law has continued to show
promising, the mainstream computing has been leveraging
multiprocessors and parallel applications extensively for
superior performance, due to the end of frequency scaling
for uniprocessors. However, decades of practical experience
demonstrated that analyzing and optimizing performance
for the complex modern parallel architectures still remains
a challenging task, especially concerning the huge design
space with divergent types of parallelism to exploit. There-
fore, developers often found themselves lost when exploring
a large number of design options and their combined effects.
For instance, as one of the most popular throughput-oriented
many-core architectures, GPU is well-known for its ability
to initiate thousands or even millions of concurrent threads.
A performance metric called “occupancy” is then proposed
to measure the ability of a workload to utilize the available
thread slots on a GPU for peak performance. However,

programmers who attempt to pursue high occupancy for
better performance then become confused, as some research
literatures later indicate that maximizing occupancy may
lead to register spilling and inferior cache performance
[1]. They become even more hesitated when other research
demonstrate that if there are plenty of instruction-level-
parallelism, better performance can be achieved with lower
occupancy [2].

These challenges emerge because developers often con-
strain themselves to address a very specific performance
issue for a machine component (e.g. registers, caches, main
memory, etc) without much indication for better understand-
ing of the global systematic effects. In other words, as mod-
ern parallel architectures become increasingly complicated,
most performance factors are not independent with each
other but are often inter-correlated or even inter-conflicted.
Therefore, a high-level and easy-to-use performance analysis
tool, that can provide comprehensive information for identi-
fying performance bottlenecks and demonstrate the perfor-
mance variation characteristics when a particular factor is
altered, is highly desired.

In this paper, we present such a performance analy-
sis tool called “X-model”, which is a high-level and vi-
sualized analytic model for general parallel machines. It
can help developers understand the observed phenomena
and derive new optimization strategies. Based on the spa-
tial state of the parallel machine, the model is able to
comprehensively investigate the combined effects of var-
ious types of parallelism: the instruction-level-parallelism
(ILP), the thread-level-parallelism (TLP), the memory-level-
parallelism (MLP) and the data-level-parallelism (DLP); and
it only requires very few essential parameters from applica-
tion and architecture for the model construction. With our X-
model, developers and architects can easily draw an intuitive
figure called “X-graph” to identify performance bottlenecks
and discern potential optimizations. More significantly, by
drawing an X-graph, designers and researchers can easily
find out, in a visualized and conceptual way, whether a
proposed technique by a manuscript is effective for resolving
the problem it targets and why, as well as what else can
be done subsequently. This paper thus makes the following
contributions:
• We propose a high-level visualizable analytic model

threads M lanes

Computation System

Memory System

n
x threads

k threads

Figure 1. Baseline Multithreaded Machine Model.

for parallel machines that can comprehensively analyze
the joint-effects of numerous factors such as MLP, ILP,
TLP and DLP (Section III-(A)).

• We propose an approach to integrate shared cache into
the X-model (Section III-(B)) to form X-graphs that can
reflect complex cache effects (Section III-(C)). Based
on these X-graphs, interesting performance insights are
derived (Section III-(D)).

• We provide a thorough case study on how to leverage
the X-model for evaluating different performance opti-
mization options for real applications. We demonstrate
that our model can identify the limiting factors, suggest-
ing potential optimization techniques, reasoning and
bounding the effectiveness of a technique, and explore
new opportunities for further optimizations.

II. BACKGROUND: THE TRANSIT MODEL

Before describing the X-model in detail, we first introduce
the Transit Model [3] that we proposed previously for
visualizing simple performance analysis for a multithreaded
machine. Although X-model is built upon the Transit model,
we further extend it to include important features such
as analyzing various types of parallelisms and expressing
sophisticated cache effects on modern architectures. These
features are essential, and can significantly affect the overall
performance of modern parallel machines.

In the Transit model, a multithreaded machine is par-
titioned into a computation system (CS) and a memory
system (MS). Their boundary is flexible depending on the
requirements. The CS throughput is viewed as the primary
performance metric while MS throughput is also of interest.
As shown in Fig.1, the multithreaded machine is modeled as
an interactive queuing network. There are totally n threads
in the machine, in which x of them are in CS and n−x = k
threads in MS. The CS is a single-queue-multiple-server
system. Each server denotes an in-order computation lane
that can perform one computation operation in a cycle. The
MS is an aggregated queuing system. During execution,
a typical thread executes in one of the M lanes of CS
for Z cycles on average, and proposes a memory request.
It then enters MS for L cycles to do the data fetching.
After retrieved, the thread enters CS again, starting a new
turnaround. The major parameters used in this paper are
listed in Table I.

CS: As shown in Fig.1, with x threads occupying x
lanes in CS, the utilization of CS would be x/M . As one
computation lane generates one operation per cycle, the
CS throughput function g(x) can be expressed as g(x) =
min(x,M), which is a roofline-like figure shown in Fig.2-
(B). Since there is one memory request per Z cycles on
average, in total there are g(x)/Z memory requests per

Table I
MAJOR PARAMETERS USED IN THIS PAPER

n Total threads in the parallel machine
k Threads in the memory system (MS)
x Threads in the computation system (CS)

f(k) MS supply throughput to CS
g(x) MS demand throughput from CS
Z Compute intensity (ops/bytes ratio)
E Instruction-level-parallelism degree
R Maximum sustainable MS throughput
M Computation lanes
π CS transition point (when CS is saturated)
δ MS transition point (when MS is saturated)
L Average MS access latency
h Shared cache hit rate
ψ Position of cache peak

M
Z

f(k)
R

M
S

Su
pp

ly
 T

hr
ou

gh
pu

t

M
S

D
em

an
d

Th
ro

ug
hp

ut

MS threads CS threads

Match

k x

Memory System Computation System

g(x)

(A) MS Supply Throughput to CS
 with k threads in MS

(B) MS Demand Throughput from CS
 with x threads in CS

πδ

Figure 2. (A): MS supply throughput function f(k) and (B): CS
throughput demand function g(x)/Z to MS.

k x

M
Z

f(k)=g(x)

Threads in the Machine
n

M
S

Th
ro

ug
hp

ut
MS CS

Flow Balance

Rδ
π

Figure 3. Transit Figure: the intersection of f(k) and g(x) represents
the equilibrium between service demand and supply of MS. It indicates the
spatial machine state: within the total n threads, k of them are in MS and
x in CS.

cycle. This is the demand throughput from CS to MS. Note
that we reverse X-axis’ direction for further integration and
utilization. π in Fig.2-(B) represents the CS transition point,
at which CS begins to get saturated.

MS: With k threads filling up k pipeline-slots in MS
shown in Fig.1, if the MS pipeline delay is L, the utilization
of MS can be described as k/L. Consequently, the MS
throughput function f(k) would be kR/L. This is also
a roofline-like figure shown in Fig.2-(A). It illustrates the
supply throughput from MS to CS. δ represents the MS
transition point, at which MS starts to get saturated.

Based on the flow balance property [4], for a steady state
of the system, f(k) = g(x). Therefore, if we combine Fig.2-
(A) and Fig.2-(B), a cross-roofline figure can be obtained,
shown in Fig.3. This is called a transit figure. The intersec-
tion point of f(k) and g(x) is the equilibrium between the
demand throughput and supply throughput of MS, which is
exactly the current MS throughput, or f(k0) if k0 is used to
describe the k value at the intersection. Consequently, the
CS throughput is Z ∗ f(k0).

The inputs of the transit model are three architecture-
related parameters R, L, M and two application-related
parameters Z and n (described in Table I). In the transit
model, since the raw memory latency L is very difficult

to change in practice, it is postulated to be constant; the
other four are changeable. The output of the model is the
machine performance, or the delivered throughput of CS and
MS. Three principles are proposed to evaluate the CS and
MS throughput in the transit figure:
• Principle 1: If the intersection of f(k) and g(x) goes

up, then MS throughput increases.
• Principle 2: If the intersection goes up and Z is

unchanged, then CS throughput increases.
• Principle 3: If compute intensity Z is increasing and

the intersection is on the right side of CS transition
point π, then CS throughput increases.

The other focus of the transit model is on illustrating
various state transitions of the multithreaded machine based
on different types of performance bounds, including thread-
bound, computation-bound, memory-bound and capacity-
bound. Please refer to [3] for more detailed description.

III. THE X-MODEL

In this section, we present the X-model. We use the
letter “X” to label the model because it illustrates the
general shape of the model — a cross-roofline. Unlike the
original roofline model which is built generally for sequen-
tial machines, the X-model is a dynamic, high-level and
visualized analytic model for parallel machines. Moreover,
with only six parameters from application and architecture,
and based on the present spatial state of a parallel ma-
chine, X-model can help users comprehensively explore the
combined effects of various types of parallelism, including
TLP, ILP, MLP, and DLP. This is very different than the
transit model, in which only simple performance analysis
(e.g. computation/memory/thread/capacity bound analysis)
can be conducted. Furthermore, the X-model integrates the
shared cache effects into the parallel machine shown in Fig.1
to form a more complete model for matching the complex
modern multi- and many-core architectures, in which cache
effects directly impact the overall performance. Next, we
demonstrate how to operate our X-model for performance
analysis and evaluation. Then, we discuss how to model and
integrate the cache effects in the X-model. All the parameters
discussed in the following subsections are shown in Table I.

A. Operating X-Model For Analysis and Evaluation
1) Memory-Level-Parallelism (MLP): As shown in

Fig.4-(B), L is the average memory access latency. In the
transit model, L is viewed as a constant parameter. In fact,
the reciprocal of L is just the average per-thread memory
throughput. Before MS throughput function f(k) hits its
upper bound R (or reaches the MS transition point δ), 1/L is
the slope of f(k). Since L is a constant, the sloping part of
the curve is a straight line. Beyond the MS transition point
δ (k >= δ), f(k) becomes flat as MS is already overloaded
with the increasing number of k threads.

In the X-model, as 1/L is the average per-thread through-
put and R is the overall throughput, then R

1/L = RL
essentially indicates the number of threads needed to saturate
the MS, or the MLP of the machine. Usually, with R being
fixed, the larger latency L, the more threads (a larger k) are
required to fill the pipeline slots and hide the latency (Fig.4-
(B)). Alternatively, with L being fixed, the larger throughput

Rf(k)

k n

πδ

Threads

M
S

Th
ro

ug
hp

ut MZ

g(x)

Capacity Bound or Machine Balancing

Rf(k)

k n
Threads

M
S

Th
ro

ug
hp

ut Z

g(x)

M δ=π

Figure 5. Capacity Bound or Machine Balance: both CS and MS attain its
best performance. Meanwhile, due to the shortage of the machine capacity,
some threads may be idle. π is the CS transition point and δ is the MS
transition point.

R implies that more threads are necessary to approach R
(Fig.4-(A)), which is just the MLP. On the other hand, the
utilized MLP, or the MLP of the workload, is proportional
to k, which is the number of threads in MS.

2) Instruction-Level-Parallelism (ILP): The effect of
ILP of the machine, which is also the ILP of CS since MS
does not have the ILP concept, is difficult to be illustrated
in the X-graph because of its entangled relationship with
the TLP in CS. Their combined effect is the number of
computation lanes (M) in CS. Since most of the modern
parallel machines adopt dynamic scheduling, both ILP and
TLP of the workload can be exploited via these lanes
simultaneously. Note that for a real machine, the ability
to exploit ILP and TLP heavily relies on the underlying
hardware design (see Section IV).

ILP of the workload is more important. It indicates the
parallelism inside the scope of a single thread, or how many
computation lanes a thread can leverage at the same time.
In the transit model, ILP of the machine is assumed as one,
meaning that a thread only occupies a single lane. In the
X-model, a variable E is employed to describe the ILP
degree of the workload. As shown in Fig.4-(E), we modify
the CS curve g(x) to address ILP. With a larger E, relatively
less threads are required in CS (a smaller x) to fill up the
available lanes and saturate CS. Note that compared to Z
(compute intensity in Fig.4-(D)), E defines the slope of g(x)
while Z acts as a scaling factor when integrating CS and MS
curves (see Section II and Fig.2) for the X-graph.

3) Thread-Level-Parallelism (TLP): Regarding the
TLP of the workload, the X-model is similar to the transit
model. It is simply n (Fig.4-(F)). However, the TLP of the
machine in the X-model is quite different. It is defined as
the minimum number of threads to hit the capacity bound or
machine balance. As shown in Fig.5, two different scenarios
of the machine balance are illustrated, at which both CS
and MS attain its best performance. The capacity bound or
machine balance describes the optimal state for software-
hardware co-design since both CS and MS bandwidth are
fully leveraged (f(k) = R, g(x) = M/Z) [3]. Unlike the
right figure in Fig.5, the left one does not have any idle
threads in neither CS nor MS. Therefore, its n is the TLP
of the resident parallel machine.

4) Data-Level-Parallelism (DLP): For the DLP of the
workload, it is defined as a metric that measures the num-
ber of computation operations performed per data element,
which is the ratio between computation operations and
memory operations of the workload, or Z (compute intensity
or arithmetic intensity) shown in Fig.4-(D). Meanwhile, the
DLP of the machine indicates the intrinsic characteristic of
the machine, which can be represented as M/R. Essentially,

f(k)

M
S

Th
ro

ug
hp

ut

 Threads

(A) Tuning Memory Bandwidth -- R

R
R

R

f(k)

M
S

Th
ro

ug
hp

ut

Threads

(B) Tuning Memory Access Latency -- L

LL

(C) Tuning Compute Lanes -- M

M
S

Th
ro

ug
hp

ut

Threads

n

M
Z

g(x)
M

M

(F) Tuning Machine Threads -- n

M
S

Th
ro

ug
hp

ut

Threads

M
Z g(x)

nn
(E) Tuning Instruction Level Parallelism -- E

M
S

Th
ro

ug
hp

ut

Threads

M
Z g(x)

EE

n
(D) Tuning Compute Intensity -- Z

M
S

Th
ro

ug
hp

ut

Threads

M
Z

g(x)

Z
Z

M
E

Figure 4. Operating X-Model.

M lanes

Computation System

Memory System

1-h

h

n

Cache Memory

x
threads

k

threads

threads

Figure 6. The new parallel machine model equipped with Shared Cache.

the relative relationship between DLP of the workload and
DLP of the machine can be summarized as: if DLP of the
workload is less than DLP of the machine (Z < M/R),
the system is memory bound; otherwise (Z≥M/R), it is
computation bound. Note, DLP of the machine (M/R) is
just the ridge point of the roofline figure [5]. To some extent,
it indicates the level of difficulty for programmers to achieve
the peak computation performance for the underlying archi-
tecture.

B. The X-Model with Cache Effects

In this subsection, we present the X-model integrated with
shared cache effects. We first model a MS with shared cache
integrated. Based on the obtained new MS throughput curve,
we then show the complete X-model. Finally, we describe
two novel observations revealed by the X-model.

1) Modeling Cache Effects: In the transit model, a basic
assumption is that threads in a multithreaded machine are
independent of each other and there is no cache interference
among the threads. In addition, the average memory access
latency L is fixed. Based on these assumptions, a roofline-
like figure for the MS throughput function f(k) is generated
(Fig.2-(A) in Section II). In the X-model, we relax these
restrictions and replace the roofline-like f(k) with a more
practical throughput curve that can better address the cache
effects.

As shown in Fig.6, on top of the transit model, an
intermediate cache system is placed ahead of the main
memory in MS. If the hit rate of the shared cache is h, a
memory request would have a probability of h to be quickly
returned from the cache while a probability of (1 − h) to
be slowly returned from the main memory. Therefore, if we

use L$ to denote cache latency and Lm to denote off-chip
memory latency, the average MS latency L with k threads
in MS (i.e. Lk) would be:

Lk = h ∗ L$ + (1− h) ∗ Lm (1)

and the new MS throughput function f(k) with k threads
would be

f(k) = k/Lk (2)

The remaining question is to find a proper cache model
that supports multithreading. We adopt the one proposed by
Jacob et. al. [6] to accomplish this. If there are k threads
accessing the cache, each thread shares on average S$/k of
the cache storage. The hit rate seen by a thread hence can
be represented as:

h(
S$

k
) = 1− (

S$

βk
+ 1)−(α−1) (3)

where α and β are the constant parameters describing the
locality of the workload. Meanwhile, the main-memory
throughput is still bounded by R. Therefore,

Lm = max{L, k
R
} (4)

where L is the constant memory latency before MS is
saturated, as discussed before. Combining Eq.(1), (2), (3)
and (4), we remodel the MS throughput function f(k) as

f(k) = k/[L$ + (max{L, k
R
} − L$)(

S$

βk
+ 1)1−α] (5)

A sample figure for the new f(k) is shown in Fig.7. At
the beginning, with the efficient utilization of the cache, the
MS throughput increases almost linearly with the expanded
MS threads, and eventually reaches a peak. We label this
peak as cache peak where k = ψ. However, once the
aggregated working set for the increased k threads exceeds
the cache capacity, thrashing occurs and performance starts
to degrade (k > ψ). Note that with a hit rate h, there are on
average h ∗ k threads in the cache and (1 − h) ∗ k threads
in the main memory. At this time, the (1 − h) ∗ k threads

Memory Throughput Bound

Cache Throughput Bound

MS Threads (k)

M
S

Th
ro

ug
hp

ut

Cache Peak

Cache Valley

ψ

Memory Plateau
δ

f(k)

Figure 7. Throughput functions f(k) for a MS with cache integrated.

are not sufficient to saturate the main-memory system. In
other words, the MLP of MS cannot be fully exploited by
(1−h)∗k threads (see Section III-A-(1)). This explains why
there is a performance valley after the cache peak: the cache
throughput drops so quickly without the memory throughput
increases fast enough. We label this valley as cache valley.
Beyond the ridge point of the cache valley, the main-memory
starts to play the major role for performance with the cache
impact diminishing. With the further expanded threads, f(k)
increases again with MS continuously exploited. Once the
thread number reaches the MS transition point δ where MS
is saturated, f(k) remains stable afterwards. We label this
stable throughput as the memory plateau.

In Fig.8, we summarize three operations to tune the cache-
integrated MS throughput function f(k) (i.e. Eq.(5)). The
first operation is workload-locality related. As shown in
Fig.8-(A), by tuning α and β, we can obtain three represen-
tative shapes of f(k) corresponding to three different cache-
sensitivity conditions: cache insensitive (CI), moderately
cache sensitive (MCS) and highly cache sensitive (HCS).
The CI applications present the same curve (Curve 1 in
Fig.8-(A)) as the f(k) function of MS without cache. For
both MCS and HCS applications, there is a cache peak.
However, the cache peak of MCS applications (Curve 2)
is lower and flatter than that of HCS applications (Curve
3). In addition, the MCS cache peak can be reached with
less threads. Beyond the cache peak, there is a cache valley
for MCS applications and possibly for HCS applications,
depending on the hit rate and MLP of the MS. However,
the valley of HCS, if exists, is not as deep as that in MCS
due to the less significant cache effects towards performance
in MCS.

The other two operations are architecture related. Fig.8-
(B) shows the condition of tuning cache capacity (S$ in Eq.
(5)). Three curves correspond to no cache, a small cache
and a big cache. Although the variations of the shapes are
very similar to Fig.8-(A), they are not exactly the same:
the change of S$ is more like a scaling transform of the
cache peak and valley, and the displacement of the curves is
quite uniform. Finally, Fig.8-(C) illustrates the scenario of
tuning raw cache access latency (L$ in Eq. (5)). Although
this cannot be easily done theoretically, it can significantly
affect the height of the cache peak and the depth of the cache
valley. Comparing Curve 2 (a slow cache) with Curve 3 (a
fast cache), it is clear that a fast cache is always beneficial,
as it strengthens the positive cache effects by increasing
the cache peak, while mitigates the negative effects through
raising or smoothing the cache valley. Also note that the
positions of the cache peak and valley do not change on the
x-axis when tuning L$.

C. X-graphs Reflecting Cache Effects
With the new f(k), we are able to draw a complete

X-graph. As shown in Fig.9-(A), the X-graph is more
comprehensive and accurate than the transit graph shown in
Fig.3. It also highlights one of the major advantages of the
X-model over the Roofline model [5]: it compartmentalizes
the machine into MS and CS. Therefore, when the cache
effects or other effects (e.g. scratchpad memory, MSHRs,
etc.) are needed to be reflected in the model, a new f(k)
based on a specific condition can be supplied without the
interference from CS.

Note that we use the MS throughput as the y-axis in our
X-graph instead of the CS throughput, albeit CS throughput
seems more convenient for performance lookup. This is
because, unlike f(k), g(x) is generally a regular roofline. If
converting a complex cache-effect integrated f(k) (shown in
Fig.8) into the CS space by multiplying Z, the process can
be complicated. Therefore, doing so simplifies the model.

D. Interesting Insights Gained From the X-graph
In this subsection, we will demonstrate two interesting

insights on performance observed from the X-graph:
• An unstable intersection point exists in the X-graph but

cannot be actually observed in practice;
• If Z is small and E is large, the workload may suffer

from sharp performance degradation at certain critical
point.

1) Unstable Intersection: Slightly different from Fig.9-
(A), f(k) and the g(x) intersect at three points in Fig. 9-(B):
σ, σ′ and σ′′. The key observation gained from this X-graph
is that the intersection σ is essentially unstable and cannot be
observed on real parallel machines, because any perturbation
will cause the equilibrium (Fig.3) to move away. The dashed
part indicates the unstable region.

Consider the scenario that the current intersection is σ. At
this time, k will be increased by one if a thread happens to
leave the computation system and issues a memory request.
Consequently, the MS throughput reduces as f(k) decreases
with a larger k (the descending dash-line part of f(k)).
Meanwhile, since x + k = n is fixed, x decreases by one.
Although this decrease also causes g(x) to reduce a bit (at
the sloping part of g(x)), the reduced magnitude of g(x)
is smaller than that of f(k) because the dropping slope
of f(k) is steeper than that of g(x). Therefore, there is
more throughput loss of MS than CS. Starting from the
equilibrium σ, f(k) becomes smaller than g(x) after this
process, causing more threads to leave CS than entering,
since MS is the bottleneck currently (i.e. f(k) < g(x)). This
leads to a further increase of k and triggers the same process
again. Such process repeats until f(k) = g(x), reaching a
stable interaction σ′′.

From the same initial state σ, the other possibility is that
a thread happens to obtain the fetched data and aborts MS.
This decreases k by one, which leads to the throughput
increase for both MS and CS. However, as the slope of g(x)
is steeper than f(k), after the process, f(k) > g(x), making
CS to be the performance bottleneck and more threads are
likely to leave MS and being blocked in CS. Consequently,
k decreases further, which will trigger the same process

(A) Tuning Workload Locality -- α, β (C) Tuning Cache Access Latency -- L$

MS Threads (k)

M
S

Th
ro

ug
hp

ut

Cache Peak

δ

Memory Plateau

δ δ

α β

1: Cache Insensitive
2: Moderate Cache Sensitive
3: Highly Cache Sensitive

1

2

3

(B) Tuning Cache Capacity -- S$

MS Threads (k)

M
S

Th
ro

ug
hp

ut

Cache Peak

Cache Valley δ

Memory Plateau

δ δ
$S

1: No Cache (capacity=0)
2: Small Cache
3: Large Cache

1

2
3

MS Threads (k)

M
S

Th
ro

ug
hp

ut

Cache Peak

Cache Valley
Memory Plateau

δ
$L

1: Off-chip (cache as slow as memory)
2: Slow Cache
3: Fast Cache

1

2

3

Figure 8. The three operations to tune the cache-integrated MS throughput function f(k): (A) tuning working load locality; (B) tuning cache capacity;
(C) tuning cache access latency.

k

f(k)

n

M
Z

π

M
S

Th
ro

ug
hp

ut

Threads

g(x)

Memory Bandwidth

Cache Throughput Bound

σ

(A) Stable Intersection: σ

Threads

M
S

Th
ro

ug
hp

ut

k n

M
Z

σ
π σ'

σ''

g(x)f(k)

Memory Bandwidth

Cache Throughput Bound

(B) Instable Intersection: σ

Threads

M
S

Th
ro

ug
hp

ut

n

M
Z

σ''

g(x)

f(k)

σ'

Cache Throughput Bound

Memory Bandwidth

σ'

σ'' σ''

π

n n
(C) Severe Throughput Degradation when increasing n

Figure 9. A complete X-graph reflecting cache effects. It illustrates three scenarios: (A) stable intersection; (B) unstable intersection; and (C) severe
performance degradation when increasing n.

again. Such a process repeats until f(k) = g(x). Under
this condition, however, the machine state shifts leftwards
and eventually settles at σ′.

To summarize, any perturbation to k will cause the
machine state to diverge from σ. However, the intersection
in Fig.9-(A) can be converged as the slope of g(x) is steeper
than that of f(k). A perturbation is then revised under this
condition, making this intersection stable. To explain this
using a mathematical form, the stable scenarios in Fig. 9-
(B) need to meet the following derivative relationship:

|∂g(x)
∂x
| > |∂f(k)

∂k
| (6)

The remaining question for Fig.9-(B) is: at which point
(σ′ or σ′′) will the machine eventually converge to? It is hard
to say from the model itself. Mostly it depends on the thread
distribution: if there are more threads in CS (x is large), CS
is likely to have a higher throughput, which matches the
good performance of MS with comparatively less threads in
MS (k is smaller with a larger x under x+k = n). Under this
scenario, the machine stabilizes at σ′. However, if there are
less threads in CS, the lower throughput of CS also matches
the poor performance of MS since excessive threads congest
the cache, causing severe thrashing and resource shortage
(e.g. MSHRs). The machine then stabilizes at σ′′. Clearly
σ′′ is undesirable as the performance is poorer.

2) Severe Performance Degradation: We further ex-
plore the two stable intersections in Fig.9-(B). As the
machine state may be settled at either σ′ or σ′′, from σ′

to σ′′ the performance drops quite significantly. If we add
more threads to the machine (increase n, see Fig.4-(F)), as
shown in Fig.9-(C), the positions of σ′ and σ′′ also move
accordingly. However, when σ′ coincides with the CS transi-
tion point δ, σ′ starts to remain constant. At this moment, the
parallel machine is already computation bound although the
cache can deliver higher throughput. The arrows in Fig.9-(C)
indicate the magnitude of performance degradation that the

machine might suffer from when increasing n: the minimum
is from σ′ to σ′′, which occurs when g(x) is tangent to
f(k). The maximum is M

Z − R, which attains when there
are infinite threads in the machine.

In summary, there are two forms of the X-model: the regu-
lar one with cache and the simpler one without. Generally, if
users do not need to consider the cache effects, the basic X-
model is more straightforward and simple. However, for the
majority of the complex modern architectures, dealing with
cache-level effects and optimizations seems more common.
In Section VI, we will show a case study using the regular
X-model with cache effects.

IV. GUIDELINES FOR PLOTTING X-GRAPH

In this section, we provide guidelines on how to draw
an X-graph that represents the integration of features from
workload and architecture. Our X-model provides good
abstraction for both the understudied architecture and the
application. From the perspective of an architecture, it ex-
tracts three machine-related parameters M,R,L, based on
which an architectural X-graph can be drawn first and it
only requires to profile the hardware once. In this paper,
to showcase the ability of our model to address complex
architectures, we choose to use one of the most popular
throughput-oriented many-core architecture—GPU, for the
purpose of evaluation and illustration. However, the same
methodology can be applied to other parallel machines.
Fig.10 shows the samples of architectural X-graphs based
on the three major GPU generations (i.e., Fermi, Kepler and
Maxwell) under single (SP) and double precisions (DP).
To profile f(k) (i.e. L and R) for the architectural X-
graph, we use a modified CUDA version of the Stream
Benchmark [7]. To profile the g(x) (i.e. M), we developed
a microbenchmark based on the method proposed in [2].

From the perspective of an application, the X-model ex-
tracts three application-dependent parameters Z,E, n, based
on which the architectural X-graph shown in Fig.10 can be

Table II
EXPERIMENT PLATFORMS. “LDS” IS THE NUMBER OF LOAD/STORE UNITS PER SM. “SCHER” INDICATES THE NUMBER OF WARP-SCHEDULERS PER

SM. “DISP” IS THE NUMBER OF WARP-DISPATCH-UNITS PER SM. δ(SP) IS THE TRANSITION POINT FOR THE MS THROUGHPUT WITH
SINGLE-PRECISION FLOATING-POINT LIKE DATA SIZE (4 BYTES) AND FULLY COALESCING ACCESS. THE UNIT IS WARPS – GB/S, E.G. 48/147 MEANS
MS THROUGHPUT FUNCTION SATURATES AT 147 GB/S WITH 48 WARPS. δ(DP) IS FOR 8 BYTES DATA SIZE WITH COALESCING. THERE ARE AT MOST

32 WARPS PER THREAD BLOCK, SO THE X-AXIS STOPS AT 32.

GPU Arch SM × SP LDS Freq Mem Band Dri/Rtm Max Warps Schr Disp δ(SP) δ(DP)
GTX570 Fermi-2.0 15x32 16 1464 MHz 152 GB/s 6.5/4.0 48 2 2 48/147 24/152

Tesla K40 Kepler-3.5 15x192 32 876 MHz 288 GB/s 6.0/6.0 64 4 8 64/180 48/200
GTX750Ti Maxwell-5.0 5x128 32 1137 MHz 86.4 GB/s 6.5/6.5 64 2 4 56/82 28/83

tuned to specifically address an application. The X-model
provides a convenient way to enable independent evalua-
tion on architecture using a series of different application
features. It also provides a way to predict application per-
formance on an unreachable or nonexistent platform if those
hardware features can be provided (R,M,L, and the ability
to exploit ILP, TLP DLP and MLP). To draw an application
X-graph, we first parse the application code/instructions via
compiler/assembler. Once the ILP (i.e. E) is obtained, we
then tune g(x) according to Fig.4-(E), which corresponds to
choose a curve from the g(x) series with different Es, shown
in Fig.10. Depending on the value of n, we can change the
relative distance between f(k) and g(x), refer to Fig.4-(F).
Finally, when Z is available, we can divide CS throughput
by Z to convert the f(k) and g(x) curves into the same
MS throughput space (as can be seen, the left y-axis is MS
throughput and the right y-axis is CS throughput, they are
not in the same space). Thus, their intersection is just the
current machine state, or present MS throughput. Following
these three steps above, we can obtain the X-graph for a
application running in a specific architecture. We will show
some examples of applications’ X-graphs in the next section.

V. VALIDATION

In this section, we validate the X-model on the Kepler
platform (listed Table II). We use 12 practical applica-
tions bfs, backprop, stencil, gesummv, hpccg,
heartwall, leukocyte, nw, nn, spmv, atax, lud
from common-used benchmarks including Rodinia [8], Par-
boil [9], Polybench [10] and [11]. Based on the guideline
introduced in the previous section, we take the Kepler archi-
tectural X-graph (Fig.10-B) as the start-point and tune the
g(x) curve according to the application features, which are
E, n and Z. To obtain these software-related parameters, we
parse the SASS assembly code of the application. Regarding
ILP or E, we use a new approach that is different from the
existing one based on CFG analysis for a general machine
[12]. Since Kepler, GPUs start to embed scheduling informa-
tion in the SASS assembly code to simplify the hardware
scheduler’s task and reduce energy. We thus developed a
tool to read this scheduling information from the cubin file
and count the average number of instructions that are issued
simultaneously, which is the ILP. Note the ILP obtained here
is always less than or equal to two because the scheduling
information is within the scope of a single warp and does
not tell how many warp schedulers (4 for Kepler shown in
Table II) will select instructions from the single warp at
runtime. In order to be accurate, we weight the ILP values
for each code-block by the number of iterations for that
block. Similarly, we also count the ratio between the number
of total instructions and off-chip memory instructions for all

the basic code-blocks, and weight by the number of loop
iterations to calculate the value of computation intensity
(Z). Finally, we calculate how many warps can be allocated
simultaneously on a SM (i.e. the occupancy), which is the
just the value of n. We developed a script to draw the X-
graph and compared the predicted computation and memory
throughput (i.e. the MS and CS throughput at the intersection
of f(k) and g(x)) with the values measured by the CUDA
profiler. The results are shown in Fig.11.

As can be seen, for most of the applications, the dark star
(measured memory throughput) is quite near the intersection
(predicted by the X-model). Note that for SP scenarios,
MS saturates at 2048 threads (64 warps), which is also the
the maximum allowable threads per SM. This explains the
linear behavior of f(k) in most applications. hpccg is a
DP application. Overall, using the computation throughput
(PCT and RCT in Fig.11) as the metric, our model achieves
84.1% prediction accuracy. Consider only three parameters
are extracted from the application, this is already quite
accurate. The major factor that may impact the accuracy,
is believed to be the coalesced memory access, as we do
not count the coalesced access effect of MS.

VI. CASE STUDY

In this section, we show an example on how to lever-
age the X-model for evaluating different performance op-
timization options for real applications. We use a memory-
intensive benchmark named gesummv from Polybench [10]
as the target kernel. The platform we take for showcasing is
Fermi GTX570, shown in Table II. Note that this case study
is to show the usage of the X-Model in detail; the general
guideline is the same for other applications and platforms.
Initially, 16 warps or 512 threads are allocated per thread
block, which means all the 48 warp-slots per SM are fulfilled
(with three thread blocks). The occupancy is 1. Besides,
16KB L1 cache on each SM is allocated by default.

To accurately reflect the present machine state for
gesummv, we draw its X-graph based on the method
discussed in Section IV. As shown in Fig.12, the isolated
yellow points are the trace-points of f(k) profiling via
the bypassing approach in [13]. The green curve is the
plot of f(k) generated by connecting and smoothing these
trace-points. We can observe that f(k) and g(x) intersect
at the dropping slope of f(k), which indicates that the
L1 cache is thrashing currently and the machine shows
a suboptimal performance. Under this thrashing condition,
an intuitive tuning approach is to increase the L1 cache
size, as discussed in Fig.8-(B). Fig.13 shows the new X-
graph in which the L1 is increased from 16KB to 48KB.
However, very limited performance gain is observed after
such tuning (only about 0.1GB/s MS throughput gain). The

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180
f(

k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

) σ

0

20

40

60

80

100

120

140

160

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for SP on Fermi

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180

f(
k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)

σ

0

20

40

60

80

100

120

140

160

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for SP on Kepler

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180

f(
k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)

σ

0

20

40

60

80

100

120

140

160

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for SP on Maxwell

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180

200

f(
k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)

σ

0

10

20

30

40

50

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for DP on Fermi

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180

200

f(
k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)

σ

0

10

20

30

40

50

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for DP on Kepler

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Warps

0

20

40

60

80

100

120

140

160

180

200

f(
k
)-

-M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)

σ

0

10

20

30

40

50

g
(x

)-
-C

S
 T

h
r
o
u

g
h

p
u

t
(G

F
/s

)

g(x)

π

f(k)

Architectural X-Model for DP on Maxwell

f(k) g(x) with E=1 g(x) with E=2 g(x) with E=3 g(x) with E=4 g(x) with E=5 g(x) with E=6 g(x) with E=7 g(x) with E=8

Figure 10. X-graphs for three different GPU architectures under single and double precisions.

0

25
6

51
2

76
8

10
24

12
80

15
36

17
92

Threads

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

bfs (PCT:41.69 RCT:36.16)

0

25
6

51
2

76
8

10
24

12
80

15
36

17
92

Threads

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

backprop (PCT:51.58 RCT:71.33)

0

51
2

10
24

15
36

Threads

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

stencil (PCT:32.76 RCT:31.8)
0

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

gesummv (PCT:1.84 RCT:2.01)

0

25
6

51
2

76
8

10
24

12
80

15
36

17
92

Threads

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

hpccg (PCT:11.1 RCT:14.04)

0

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

heartwall (PCT:27.1 RCT:32.9)

0 1 2 3 4 5 6 7 8 9 10

Threads

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

leukocyte (PCT:78.91 RCT:88.86)

0 2 4 6 8 10 12 14 16 18 20 22 24

Threads

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

nw (PCT:1.07 RCT:0.99)

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

Threads

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

nn (PCT:11.61 RCT:10.6)

0

51
2

10
24

15
36

Threads

0

5

10

15

20

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

spmv (PCT:11.34 RCT:16.43)

0
12

8
25

6
38

4
51

2
64

0
76

8
89

6
10

24
11

52
12

80
14

08
15

36
16

64
17

92

Threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

atax (PCT:1.82 RCT:1.72)

0 2 4 6 8 10 12 14 16 18 20 22

Threads

0.00

0.02

0.04

0.06

0.08

Th
ro

ug
hp

ut
 (

G
B/

s
pe

r
SM

)

lud (PCT:1.08 RCT:1.59)

Figure 11. Validation Results on Kepler Platform.

intersection is still at the dropping slope of f(k), which
indicates that the reason behind such poor performance
improvement is not that the application is cache insensitive,
but because the cache thrashing condition is still severe due
to resource contention (e.g., limited MSHRs and miss queue
entries) or bad data locality. However, compared with the
16KB L1 scenario (Fig.12), the cache peak of 48KB L1 in
Fig.13 is much higher, which also implies that: (1) If the
cache thrashing can be effectively resolved (e.g. via cache
bypassing), the achievable performance can be much higher.
In other words, the potential performance can be increased
by reducing capacity misses through larger cache. (2). Our
cache enlarging operation in Fig.12 is correct. The X-model
here highlights its first usage: investigating machine states
and identifying the limiting factors for performance.

To further improve the performance of the scenario shown
in Fig.13, we generate other tuning approaches by evaluating
each model-tuning operations illustrated in Fig.4 and Fig.8,
with the intention of increasing CS/MS throughput. After
eliminating the ones that cannot improve CS/MS throughput
under this thrashing condition (e.g., manipulating compu-
tation lanes M), we propose four optimization strategies
for gesummv: thread throttling (Fig.14), cache bypassing
(Fig.15), increasing compute intensity (Fig. 16) and reduc-

ing ILP (Fig.17). They correspond to the operations of
decreasing n, increasing R, increasing Z and decreasing
E, respectively. Here, we show the second usage of the X-
model: deriving and selecting the potential optimization
approaches.

Thread throttling [14], [15] is to restrict the number of
concurrent threads on a SM to adapt the cache capacity or
memory bandwidth [1]. Cache bypassing [16], [13] is to
keep a limited number of threads accessing the cache while
others bypass the cache to a lower memory hierarchy (in
our case, bypass L1 to L2). Although both techniques are
demonstrated to be effective for cache thrashing in various
existing work, the explanation on when specific techniques
would achieve the most performance gain as well as when
they are going to fail, is unknown. The X-graphs in Fig.14
and Fig.15, however, can help us explain these directly. They
show that the intersection goes up in both graphs under
thread throttling and cache bypassing. The best performance
is achieved when g(x) coincides with the cache peak ψ in
Fig.14 and when R rises to the same level as the cache peak
in Fig.15. Eventually, further thread throttling or bypassing
beyond the cache peak will start to degrade the performance
again. Here, we show the third usage of the X-model:
reasoning and bounding the effectiveness of a technique.

0 4 8 12 16 20 24 28 32 36 40 44 48

Warps per SM

0

1

2

3

4

5

6

7

M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)
p

e
r
 S

M π

ψ

f(k) g(x)

X-graph for gesummv on Fermi (16KB L1)

Figure 12. The X-graph for gesummv on
GTX570 with default 16KB L1 and 48 warps.

0 4 8 12 16 20 24 28 32 36 40 44 48

Warps per SM

0

1

2

3

4

5

6

7

M
S

 T
h

r
o
u

g
h

p
u

t
(G

B
/s

)
p

e
r
 S

M π
ψ

f(k) g(x)

X-graph for gesummv on Fermi (48KB L1)

Figure 13. The X-graph for gesummv on
GTX570 with 48KB L1 cache size and 48 warps.

Optimization-1: Thread Throttling (--n)

Threads

M
S

Th
ro

ug
hp

ut

k n

M
Z

g(x)

f(k)

π' π

ψ n'k'

Figure 14. Thread Throttling. As the intersection
goes up and Z is unchanged, based on Principle
2, both CS and MS performance increase.

Optimization-2: Cache Bypassing (++R)

Threads

M
S

Th
ro

ug
hp

ut

k n

M
Z

g(x)

f(k)

k'ψ

π

Figure 15. Cache Bypassing. As the intersection
goes up and Z is unchanged, based on Principle
2, both CS and MS performance increase.

Optimization-3: Increasing Compute Intensity (++Z)

Threads

M
S

Th
ro

ug
hp

ut

k n

M
Z

g(x)

f(k)

k'M
E

ψ

π

M
Z'

Figure 16. Increasing Z. As Z is increased and
the intersection goes up only slightly, based on
Principle 3, CS throughput is enhanced but MS
throughput improvement is very limited.

Optimization 4: Reducing ILP (--E)

Threads

M
S

Th
ro

ug
hp

ut

k n

M
Z

g(x)

f(k)

k' M
E

ψ

π

Figure 17. Reducing E. As the intersection goes
up and Z is unchanged, based on Principle 2, both
CS and MS performance increase.

Furthermore, compared to thread throttling and cache
bypassing, the two much less obvious tuning options are
illustrated in Fig.16 and Fig.17. Fig.16 shows that although
increasing Z can enhance the CS throughput for gesummv
(as Z is increased, based on Principle 3, CS throughput
is increased), the improvement for MS throughput is very
limited (i.e. the height difference between the two inter-
sections is tiny). Note that Z value of an application is
mostly decided by its algorithm. Therefore, to increase
Z, algorithm modification is often required. Fig.17 shows
something very interesting that has not been explored by any
existing literature as a performance tuning method: reducing
ILP level (E) of an application can potentially increase
the MS and CS throughput under cache trashing effect. We
leave the exploration on this new observation from our X-
model as the future work. Nonetheless, we show the last
usage of the X-model here: exploring new opportunities
for performance improvement.

Finally, shown in Fig. 18, we validate the tuning ap-
proaches suggested by the X-model above, including larger
cache size, thread throttling and cache bypassing on a real
GPU platform. We also show the performance of disabling
L1 as a reference. The performance results are normalized
to the default condition with 16KB L1 cache. Overall,
using 48KB L1 cache achieves 7% speedup; thread throt-
tling achieves 8% and 26% speedup for 16KB and 48KB
L1 scenarios respectively; and cache bypassing achieves
22% and 36% speedup under two cache sizes respectively.
These figures demonstrate that the tuning approaches offered
through the X-model are effective with regard to perfor-
mance optimization for a real parallel machine.

VII. RELATED WORK

In this section, we discuss two existing analytic models
that are widely-known and related to our X-model: the

16K
B
 L

1

16K
B
 T

hro
tt

lin
g

16K
B
 B

yp
as

si
ng

48K
B
 L

1

48K
B
 T

hro
tt

lin
g

48K
B
 B

yp
as

si
ng

D
is

ab
lin

g L
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
P

e
r
fo

r
m

a
n

c
e
 S

p
e
e
d

u
p

Gesummv Optimization Results on Fermi

Figure 18. Validation of the tuning insights provided by the X-model.

roofline model [5], [17], the valley model [18], [19], and
the MWP-CWP model for GPUs [20], [12].

Roofline Model: The roofline model [5], [17] draws a
roofline-like figure to show the variation of machine through-
put with respect to the arithmetic intensity of the workload,
which is essentially the relative relationship between DLP of
the workload and DLP of the machine (i.e. Z and M/R).
Both models aim at providing a visualizable and intuitive
throughput model. However, the X-model is significantly
different in three aspects. First and most important, the
roofline model is generally for sequential machine and only
addresses the influence of Z. The X-model, however, is for
parallel machines. We address the impacts from various
types of parallelism including ILP, TLP, MLP and DLP. Sec-
ond, the roofline model is constructed based on bottleneck
analysis whereas the X-model is built upon flow balancing.
The roofline model is basically static for a certain machine,
and by profiling Z of a workload, users can decide if the
workload is memory-bound or computation-bound. The X-
model, however, tracks the spatial state of the machine with
a specific workload, which is the equilibrium between CS
and MS. Any change of the parameters leads to the variation

of the X-graph. Therefore, the X-model is dynamic. Finally,
the X-model is much more flexible than the roofline model.
In the roofline model, there is only one curve representing
both MS and CS. In our X-model, we separate the MS
curve from the CS curve so that each of them can be
profiled, varied and analyzed independently. Therefore, X-
model makes it possible to investigate complex architectures
(e.g., the complicated cache effects) by replacing f(k) and
g(x) with more sophisticated and accurate shapes.

Valley Model: In [18], [19], Guz et. al. proposed an
analytic model to describe the interaction between thread
volume and shared cache for a multithreaded-manycore
machine. Specially, they identified a performance valley be-
tween the cache efficiency zone and multithreaded efficiency
zone for applications showing super-linear degradation of the
hit rate with increased threads.

Although our modeling process for the cache effects in
Section III-B is analogous, the X-model itself is dramatically
different. First, the valley model assumes that MS always
remains the major bottleneck of the machine. We do not
have this assumption so that factors such as ILP degree (E)
can affect the cache performance, as discussed in Section
VI. Second, the valley model assumes that allocated threads
in the machine (i.e., n) share the cache storage. However, we
argue that in the steady state of a parallel machine, within
a certain time interval, only a fraction of the threads (MS
threads) are essentially accessing MS. Therefore, the cache
sharing should be only among these MS threads (k) instead
of all threads of the machine (n), as reflected in Equation
3. Third, the memory latency in valley model is fixed. That
is why they introduced a bound from the CS part. In our
X-model, the memory latency is changeable as the overall
throughput is less than R. Finally, the CS and MS threads
in the valley model are combined. The model focuses on
their joint effect based on the MS bound assumption. As
a comparison, the X-model separate the parallel machine
into two curves and concentrates on their relative effect.
Therefore, the X-model can offer more insights like the
instable equilibrium and the sharp performance degradation
discussed in Section III-D.

MWP-CWP Model: MWP-CWP model [20], [12] is
proposed to model execution time for GPUs specifically. It
involves complex architectural level parameters and requires
the support of simulation tools and PTX code, and it lacks
the flexibility to play ”what-if” scenarios for evaluating the
effectiveness of different optimization techniques. Our X-
model eliminates the “only GPU” part, so that it can be ap-
plied for general parallel machines. Although the intention of
our model is to provide high-level evaluation for the present
state of a parallel machine and propose useful intuition for
optimizations, it can also be extended for execution time
prediction if needed.

VIII. CONCLUSION

In this paper, we propose a performance model named
“X”, which is a high-level and visualized analytic model for
general parallel machines. Based on the spatial state of the
machine, the X-model is able to comprehensively investigate
the combined effects of various types of parallelism and the

complex cache effects. With the model, developers and ar-
chitects can easily draw an X-graph to identify performance
bottlenecks, discern potential optimizations and derive novel
intuitions.

REFERENCES

[1] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither
more nor less: optimizing thread-level parallelism for GPG-
PUs,” in Proc. PACT. IEEE, 2013.

[2] V. Volkov, “Better performance at lower occupancy,” in Proc.
GTC, vol. 10. San Jose, CA, 2010.

[3] A. Li, Y. C. Tay, A. Kumar, and H. Corporaal, “Transit: A
visual analytical model for multithreaded machines,” in Proc.
HPDC. ACM, 2015.

[4] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,
Quantitative system performance: computer system analysis
using queueing network models. Prentice-Hall, Inc., 1984.

[5] S. Williams, A. Waterman, and D. Patterson, “Roofline: an
insightful visual performance model for multicore architec-
tures,” Communications of the ACM, vol. 52, no. 4, 2009.

[6] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N. Mudge,
“An analytical model for designing memory hierarchies,” TC,
vol. 45, no. 10, 1996.

[7] NVIDIA. CUDA port of the stream benchmark. [Online].
Available: https://devtalk.nvidia.com/default/topic/381934/str
eam-benchmark/

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in Proc. IISWC. IEEE, 2009.

[9] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-
W. Chang, N. Anssari, G. D. Liu, and W.-M. Hwu, “Par-
boil: A revised benchmark suite for scientific and commer-
cial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

[10] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and
J. Cavazos, “Auto-tuning a high-level language targeted to
GPU codes,” in InPar. IEEE, 2012.

[11] J. Dongarra, “Toward a new metric for ranking high perfor-
mance computing systems,” Sandia Report, no. SAND2013-
4744 312, 2013.

[12] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A perfor-
mance analysis framework for identifying potential benefits
in GPGPU applications,” in Proc. PPoPP. ACM, 2012.

[13] A. Li, G.-J. v. d. Braak, A. Kumar, and H. Corporaal,
“Adaptive and Transparent Cache Bypassing for GPUs,” in
Proc. SC. ACM, 2015.

[14] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang,
and W.-M. Hwu, “Adaptive cache management for energy-
efficient gpu computing,” in Proc. MICRO. IEEE, 2014.

[15] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
conscious wavefront scheduling,” in Proc. MICRO. IEEE
Computer Society, 2012.

[16] W. Jia, K. Shaw, M. Martonosi et al., “MRPB: Memory
request prioritization for massively parallel processors,” in
Proc. HPCA. IEEE, 2014.

[17] S. W. Williams, Auto-tuning performance on multicore com-
puters. ProQuest, 2008.

[18] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and
U. C. Weiser, “Many-core vs. many-thread machines: stay
away from the valley,” CAL, vol. 8, no. 1, 2009.

[19] Z. Guz, O. Itzhak, I. Keidar, A. Kolodny, A. Mendelson, and
U. C. Weiser, “Threads vs. caches: modeling the behavior of
parallel workloads,” in Proc. ICCD. IEEE, 2010.

[20] S. Hong and H. Kim, “An analytical model for a GPU
architecture with memory-level and thread-level parallelism
awareness,” in Proc. ISCA. ACM, 2009.

